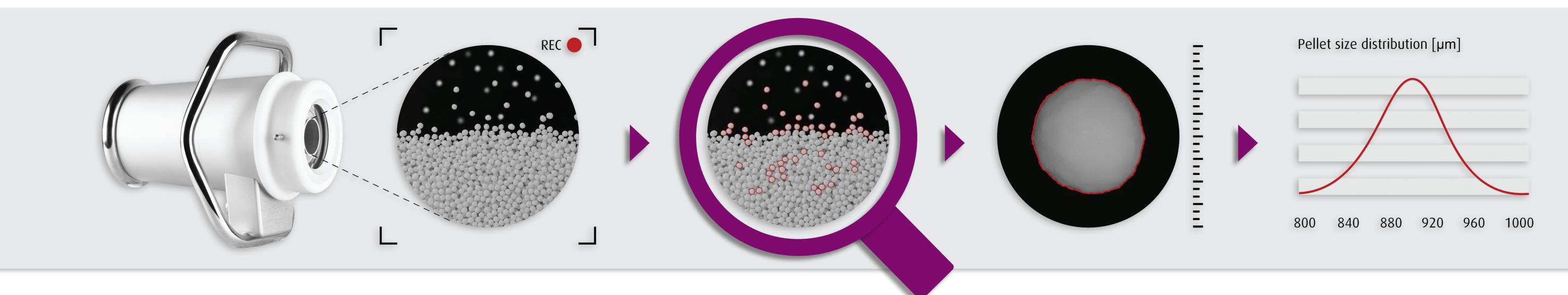


University of Ljubljana Faculty of Electrical Engineering

In-line monitoring and analysis of fluid-bed pellet coating processes using **PATVIS** APA

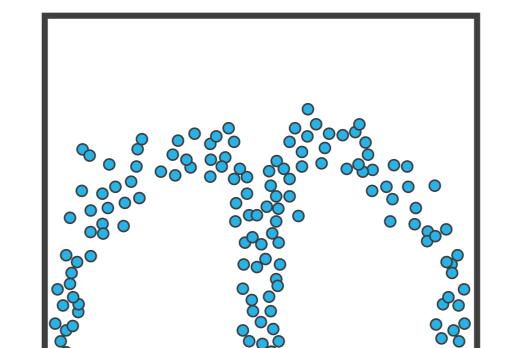
۲


D. Kitak¹, G. Podrekar¹, C. Funaro², G. Mondelli², G. Bertuzzi², B. Likar^{1,3}, D. Tomaževič^{1,3} ¹ Sensum, Computer Vision Systems, Tehnološki park 21, 1000 Ljubljana, Slovenia ² IMA S.p.A. Active Division, Via I Maggio 14, 40064 Ozzano Emilia, Bologna, Italy ³ Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia

AIM

The aim of this study was to evaluate the performance of **PATVIS** APA (Sensum, Slovenia), a visual inspection system designed for in-line monitoring and analysis of pellet coating processes, on a fluid-bed coater. In particular, the pellet size was measured in real-time, from which the pellet coating thickness was estimated and compared to the final coating thickness determined by batch weight gain as a reference method.

INTRODUCTION


Coating is one of the most commonly employed processes within manufacturing of solid oral dosage forms [1]. Fluid-bed coating with a draft tube insert is the preferred method for coating pellets [2]. The main parameter that characterizes both the state of the coating process and the product is the coating thickness. It is especially important in active and functional coatings [3] and represents one of the most important critical quality attributes that should be routinely monitored [4].

MATERIALS AND METHODS

MATERIALS

The coating formulation was composed of hydroxypropyl methylcellulose (9.36%), polyethylene glycol (0.29%), riboflavin (0.13%) and deionized water (90.22%). The sugar pellet cores had a size distribution in the range of 850 4000 µm

acquired at 100 frames per second, giving a 200 000 pellets sample size in a two minute sampling interval.

COATING THICKNESS ESTIMATION

The coating thickness was estimated from the difference between the medians (d_{50}) of the measured pellet size distributions at coating-start and coating-end time points.

in the range of 850-1000 µm.

METHODS

COATING

Five coating processes were performed in the pilotscale fluid-bed coater ARIA 120 (IMA, Italy) in the bottom-spray configuration (Table 1).

MONITORING

The image acquisition was performed through an observation window of the coater. Images were

RESULTS AND DISCUSSION

Table 2: Final coating thickness estimation

	pating thicknes PATVIS APA		Difference [µm] PATVIS APA-Weight gain		
1	15.0	14.5	0.5		
2	7.6	7.6	0.0		
3	7.6	7.1	0.5		
4	5.8	6.0	-0.2		
5	9.0	8.4	0.6		
Root me	ean square (RM	0.42			
Coeffici	ent of determi	0.99			

PATVIS APA shows good correlation and minimum discrepancy with reference to the batch weight gain method, even for very thin film coatings (Table 2).

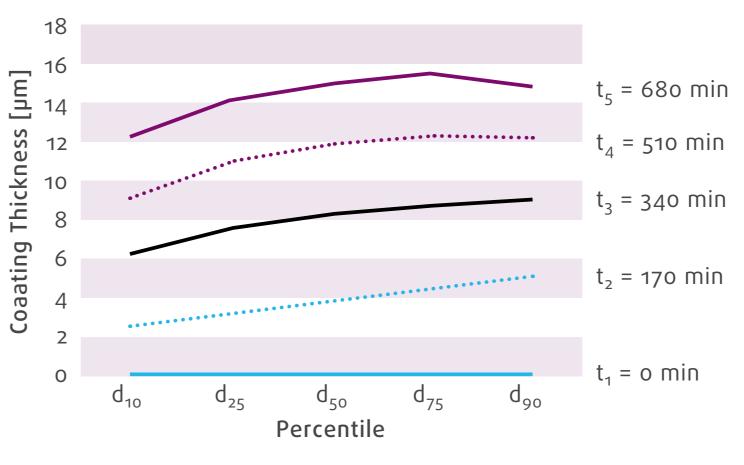


Table 1: Process parameters (Tin, Qin = Temperature and quantity of the fluidizing air; SR = Spray rate; AP = Atomization pressure; CD = Column distance; WG = Theoretical weight gain)

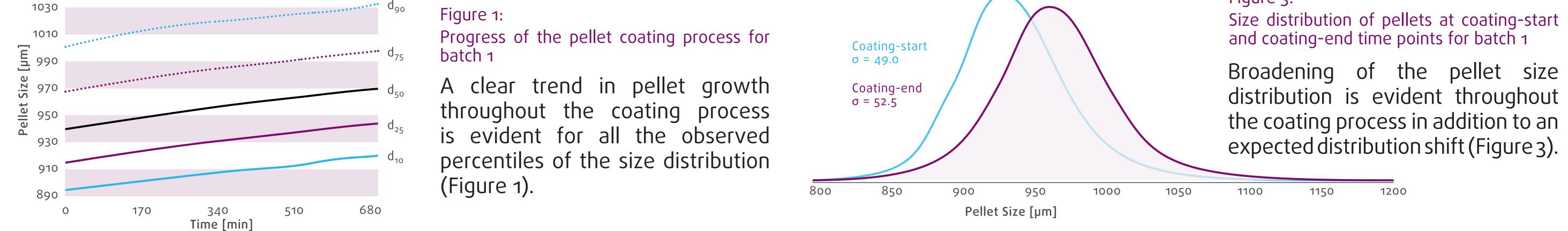

Batch	Size [kg]	T _{in} [°C]	Q _{in} [m ³ /h]	SR [ml/min]	AP [bar]	CD [mm]	WG [%]
1	50	70	800	80	2	28	10
2	25	70	800	150	3	28	5
3	50	55	800	150	2	35	5
4	50	70	500	80	3	35	5
5	25	55	500	80	2	28	5

Figure 2:

Evolution of the coating thickness gains for batch 1

The evolution of the coating thickness gains (Figure 2) indicates that smaller pellets receive a lesser amount of coating material, which is consistent with previous findings [5].

Figure 3:

CONCLUSION

Results show the potential of **PATVIS** APA as a process analytical technology (PAT) tool for more in-depth understanding, controlling and optimisation of pellet coating processes.

PATVIS APA revealed process footprints in the form of pellet size and the underlying size distribution, enabling effective process end-point detection and intervention.

- 1. Porter SC. Coating of tablets and multiparticulates. In: Aulton, ME (Ed), Aulton's Pharmaceutics: The Design and Manufacture of Medicines. London: Churchill Livingstone; 2013. p. 912.
- 2. Teunou E, Poncelet D. Batch and continuous fluid bed coating review and state of the art. J Food Eng. 2002 Aug;53(4):325–40.
- 3. Knop K, Kleinebudde P. PAT-tools for process control in pharmaceutical film coating applications. Int J Pharm. 2013 Dec 5;457(2):527–36.
- 4. Kucheryavski S, Esbensen KH, Bogomolov A. Monitoring of pellet coating process with image analysis—a feasibility study. J Chemom. 2010 Jul 1;24(7-8):472–80.
- 5. Luštrik M, Dreu R, Šibanc R, Srčič S. Comparative study of the uniformity of coating thickness of pellets coated with a conventional Wurster chamber and a swirl generator-equipped Wurster chamber. Pharm Dev Technol. 2012 Jun 1;17(3):268–76.