T0930-08-54

In-line Intra-minitablet Coating Thickness Characterization with **PATVIS APA**

G. Podrekar¹, D. Kitak¹, A. Mehle¹, D. Tomaževič^{1,2}, R. Dreu³ ¹Sensum, Computer Vision Systems (www.sensum.eu) ²Faculty of Electrical Engineering, University of Ljubljana ³Faculty of Pharmacy, University of Ljubljana

CONTACT INFORMATION: gregor.podrekar@sensum.eu

PURPOSE

- Coating can variation thickness compromise the functionality of the coat and thus the safety and efficiency of the dosage form.
- The band, cap and edge are critical areas of thickness for interest coating characterization on minitablets.
- Visual imaging proved an efficient and accurate method for size-based in-line mean coating thickness measurement of band areas on minitablets.
- We propose a CNN enhanced image analysis approach providing coating thickness measurements over the entire minitablet perimeter thus enabling characterization of the coating uniformity.

OBJECTIVE(S)

 Development and evaluation of a novel visual imaging-based approach for in-line thickness intra-minitablet coating characterization.

MATERIAL(S)

- Placebo round biconvex cores, 3 mm diameter, 2 mm height, 2.5 mm convex radius, mean weight of 15 mg.
- Enteric coating solution consisting of 56.98 % Eudragit L30 D-55 (Evonik, Germany), 0.85 % glyceryl monostearate 44-50 (Lex, Slovenia), 1.71 % triethyl citrate (Sigma Aldrich, USA), 0.34 % Polysorbate 80 (Sigma Aldrich, USA) and 40.12 % purified water.

METHOD(S)

RESULT(S)

Product Product Coating Coating Process $\overline{CT}(mic)$ $\overline{CT}(mic)$ $\overline{CT}(PAT)$ $\overline{CT}(PAT)$ $\overline{CT}(PAT)$

• Three batches coated in a fluid-bed Wurster-type coater (Figure 1). • Visual inspection system PATVIS APA used to acquire images of minitablets dispersed in air during the coating processes (Figure 2). Average sample size of 100 minitablets in a one minute sampling interval at 100 frames per second.

Figure 2: PATVIS APA (Sensum, Computer Vision Systems, Slovenia).

Table 1: Coating and coating thickness measurement results.

	Batch 1	Batch 2	Batch 3
mass before coating (g)	700.0	700.0	700.0
mass after coating (g)	764.2	763.8	760.2
dispersion sprayed (g)	600	600	600
time (min)	45.5	42.0	42.5
yield (%)	82.6	84.9	81.5
croscope) _{band} (µm)	42.5	45.3	44.5
croscope) _{cap} (µm)	43.7	46.7	45.3
TVIS APA) _{band} (µm)	42.9	45.3	45.5
<i>TVIS APA</i>) _{cap} (µm)	41.5	42.1	43.1
<i>TVIS APA</i>) _{edge} (µm)	40.3	37.1	37.6

Figure 3: Acquired image of a minitablet.

Figure 4: Coating thickness as a function of angle.

• 3D orientations of minitablets estimated with a convolutional neural network. Coating thickness measured as a function of angle (0°-90°) within the perimeter of a minitablet cross-sectional view (Figure 3, 4).

 Obtained coating thicknesses compared to an optical stereomicroscope measurements as a reference method.

Figure 5: Intra-minitablet coating thickness uniformity and mean coating thickness trends.

360

Careers, and Community

CONCLUSION(S)

- A new approach for in-line intra-minitablet coating thickness characterization developed and evaluated on three laboratory-scale batches.
- Results show good overall intra-minitablet coating uniformity and indicate erosion of exposed minitablet core's edges (Figure 5).
- Good agreement found between the proposed in-line and reference off-line method with overall error of 0.5 μ m and 3.0 μ m for the band and cap areas (Table 1).

 Proposed approach can be used for coating thickness estimation and intra-coating in minitablet uniformity characterization formulation design.